
Information Sciences 258 (2014) 371–386
Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Security and privacy for storage and computation in cloud
computing
0020-0255/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2013.04.028

⇑ Corresponding author. Tel.: +86 21 34204642.
E-mail address: zfcao@cs.sjtu.edu.cn (Z. Cao).
Lifei Wei a, Haojin Zhu a, Zhenfu Cao a,⇑, Xiaolei Dong a, Weiwei Jia a, Yunlu Chen a,
Athanasios V. Vasilakos b

a Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
b Department of Computer and Telecommunications Engineering, University of Western Macedonia, Kozani, Greece

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 27 April 2013

Keywords:
Secure computation auditing
Secure storage
Privacy-cheating discouragement
Designated verifier signature
Batch verification
Cloud computing
Cloud computing emerges as a new computing paradigm that aims to provide reliable, cus-
tomized and quality of service guaranteed computation environments for cloud users.
Applications and databases are moved to the large centralized data centers, called cloud.
Due to resource virtualization, global replication and migration, the physical absence of
data and machine in the cloud, the stored data in the cloud and the computation results
may not be well managed and fully trusted by the cloud users. Most of the previous work
on the cloud security focuses on the storage security rather than taking the computation
security into consideration together. In this paper, we propose a privacy cheating discour-
agement and secure computation auditing protocol, or SecCloud, which is a first protocol
bridging secure storage and secure computation auditing in cloud and achieving privacy
cheating discouragement by designated verifier signature, batch verification and probabi-
listic sampling techniques. The detailed analysis is given to obtain an optimal sampling size
to minimize the cost. Another major contribution of this paper is that we build a practical
secure-aware cloud computing experimental environment, or SecHDFS, as a test bed to
implement SecCloud. Further experimental results have demonstrated the effectiveness
and efficiency of the proposed SecCloud.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The recent development of cloud computing has shown its potential to reshape the current way that IT hardware is de-
signed and purchased. Among numerous benefits, cloud computing offers customers a more flexible way to obtain compu-
tation and storage resources on demand. Rather than owning (and maintaining) a large and expensive IT infrastructure,
customers can now rent the necessary resources as soon as, and as long as, they need [1]. Thus, customers cannot only avoid
a potentially large up-front investment (which is particularly attractive for small companies and startups), they may also be
able to reduce their costs through economies of scale and by paying only for the resources they actually use.

Even though cloud computing is envisioned as a promising service platform for the Next Generation Internet [14], secu-
rity and privacy are the major challenges which inhibit the cloud computing wide acceptance in practice [31]. Different from
the traditional computing model in which users have full control of data storage and computation, cloud computing entails
that the managements of physical data and machines are delegated to the cloud service providers while the users only retain
some control over the virtual machines. Thus, the correctness of data storage and computation might be compromised due to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2013.04.028&domain=pdf
http://dx.doi.org/10.1016/j.ins.2013.04.028
mailto:zfcao@cs.sjtu.edu.cn
http://dx.doi.org/10.1016/j.ins.2013.04.028
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

372 L. Wei et al. / Information Sciences 258 (2014) 371–386
the lack of the control of data security for data owners. In this study, we further classify cloud computing security into two
major classes: Cloud Storage Security and Cloud Computation Security, where the former is referred to ensuring the integrity of
outsourced data stored at untrustworthy cloud servers while the latter refers to checking the correctness of the outsourced
computation performed by untrustworthy cloud servers.

Most of the current researches on secure cloud computing still focus on the cloud storage security. However, the outsour-
ced computation security receives less attention. For sake of saving computation resources, the cloud servers may not per-
form the necessary computations but claim to have done so. Additionally, the centralized architectures emphasize the fact
that the cloud servers can represent a single point of failure, as proven by the recent meltdown of Google’s Gmail systems
[25]. Under Byzantine [11] failure or even external attacks, the cloud may perform unreliable computation operations while
choosing to hide the computations. This cheating behavior of the cloud servers, if undetected, may render the results useless.
Even from the point of accountability, some secure computation mechanisms should be in place to meet the needs of decid-
ing whether the cloud servers or the users should be responsible for it once there is any problem taking place. Note that, it is
quite natural for the servers to initially suspect a problem with the customer’s software, and vice versa [18].

Generally, due to the limitation of the computation and communication resources, the cloud users cannot afford the cost
incurred by result auditing or verification. One promising approach to prevent the cloud users from incurring expensive ver-
ification costs is to introduce a trusted auditor who conducts cloud auditing on behalf of the users. Even though public aud-
itability of secure storage in cloud [33,34] has been proposed in the context, public auditability in secure computation
receives less attentions. More closely related references are secure remote computation in distributed system [24]. However,
few of those proposed schemes target at secure cloud computation. Furthermore, privacy preserving is a critical issue for
secure cloud computing while only a few of the existing researches [20,29] have taken it into consideration.

To achieve secure computing auditing in cloud, one straightforward method is to double-check each result. The cloud pro-
viders may give the inputs and overall computing result to the auditor, which will follow an identical procedure to compute
the result and then compare it with the one provided by the cloud providers. However, these schemes may lead to a waste of
I/O and computation resources. Note that the data transferring bottlenecks rank in the top of the ten obstacles which may
prevent the overall success of the cloud computing [1]. In [13], a Commitment-Based Sampling (CBS) technique is introduced
in the conventional grid computing however it does not take the privacy issue into consideration. In this paper, we introduce
a novel technique by integrating CBS with the designated verification technique.

The contributions of this paper can be summarized as follows.

� Firstly, we model the security problems in cloud computing and define the concepts: uncheatable cloud computation and
privacy cheating discouragement in our cloud computing, which are our design goals.
� Secondly, we propose a basic protocol, SecCloud, to attain data storage security and computation auditing security as well

as privacy cheating discouragement and an advanced protocol to achieve computation and communication efficiency
improvement through batch verification.
� Thirdly, we analyze and prove that SecCloud achieves our design goals and discuss how to minimize the computation

cost by choosing the optimal sampling size.
� Finally, we develop a cloud computing experimental environment SecHDFS and implement SecCloud as a test bed. Exper-

iment results demonstrate the suitability of the proposed protocol.

The remainder of this paper is organized as follows. A brief review on the related work is given in Section 2. Section 3
describes the system architecture and security problems and presents design goals. Some necessary preliminary knowledge
is given in Section 4. We propose an overview of our SecCloud in Section 5 and then present an advanced SecCloud with
performance optimization in Section 6. Section 7 gives out detailed security analysis and discussion. Section 8 introduces
the experiment environment SecHDFS and implement our SecCloud as a test bed. Finally, Section 9 concludes the whole
paper.
2. Related work

Security and privacy issues in cloud computing has received extensive attentions recently. Generally speaking, the re-
search work on cloud computing almost falls into the two cases: cloud storage security and cloud computation security.

Cloud storage security mainly addresses the secure outsourced storage issue. In [2], Ateniese et al. first defined a model
for provable data possession (PDP), which allowed a client that had data stored at an untrusted server to verify that the server
possessed the original data without retrieving it. They utilized RSA-based homomorphic tags for auditing outsourced data,
but they did not consider the dynamic data storage. In their later work, Ateniese et al. [3] proposed a partially dynamic ver-
sion of the PDP scheme using symmetric key cryptography. However, it did not support public auditability. Juels et al. [22]
proposed the definition of proof of retrievability (PoR), which used spot-checking and error-correcting codes to ensure both
possession and retrievability for data file on archive service system. Wang et al. [34] first achieved both public verifiability
and dynamic data storage operations employing an Third Party Auditor and improving the proof of retrievability model by
using classic Merkle Hash Tree [26] construction for BLS [8] based block tag authentication. Later, they proposed a scheme
achieving privacy preserving public verifiability as well as the dynamic data storage operations in [33] by utilizing the public

L. Wei et al. / Information Sciences 258 (2014) 371–386 373
key based homomorphic authenticator and uniquely integrate it with random mask technique. The further work explored
the technique of bilinear aggregate signature for TPA can verify data auditing in a complexity of O(n). Erway et al. [15] pro-
posed the first construction of dynamic provable data possession, which extended the PDP model in [2] to achieve provable
updating stored data using rank-based authenticated skip lists.

Compared with secure cloud storage, secure cloud computation still receives less attentions. The related work include
remote computation audit and verifiable computation. [17] proposed a ringer scheme in distributed computing where the
supervisor sent to the participant some pre-computed results without disclosing the corresponding inputs. [27] presented
a remote audit mechanism on an existing distributed computing model and provided efficient methods for verifying whether
a remote host performed the assigned task. Similar to our prior work [35,16] introduced and formalized a notion of verifiable
computation, which allows a weak client to outsource the computation of a function on various dynamically-chosen inputs
to the help workers, which return the results as well as proofs that the computation was carried out correctly on the given
input value. The primary constraint is that the verification of the proof should require substantially less computational effort
than computing the function again from scratch. Further work about verifiable computation could be found in [9,30] which
consider the efficiency of the outsourcing computation. The incentive issues of outsourcing computation have been consid-
ered in [4] to prevent from cheating.
3. Problem formulation

In this section, we present the system architecture, model formulation and design goals.
3.1. System architecture of cloud computing

As shown in Fig. 1, we consider a general cloud computing model constituted of a number of cloud servers, S1;S2; . . . ;SN ,
which are under the control of one or multiple cloud service providers (CSP). These cloud servers process plenty of compu-
tation resource and storage resource. CSP allocates these resources by means of customized Service Level Agreements
[28]. For example, to perform a batch-processing tasks, by employing the existing programming abstraction techniques such
as MapReduce [12] and its open-source counterpart Hadoop [5], CSP divides such a large task into multiple small sub-tasks
and allows them parallelly executed across up to hundreds of cloud servers.

We assume the cloud user (CU), such as a mobile phone, a laptop, and an apple ipad, which has lower computation re-
source and smaller storage resource than those of the cloud servers. Most of the communication are through wireless, even
if an ordinary computer with limited hours (not 24-h) wired-connecting to the cloud servers. CU would submit storage ser-
vice requests and computation service requests to CSP when it demands.

Similar to existing secure storage auditing schemes, we also assume the existence of a number of verification agencies
(VAs), which are chosen and trusted by CU and responsible for auditing the cloud services on data storage and computation.
VAs are expected to have more powerful computation and storage capability to perform the auditing operations than those
of CU.
Cloud Servers
Cloud Users

Verification Agencies

Cloud Service
Provider

Storage service
request/return

Computation service
request/return

Verification delegating/

Results returning Veri
fic

ati
on

 re
qu

es
t/

Data
 fo

r v
eri

fic
ati

on

Fig. 1. Cloud computing architecture in our protocol.

374 L. Wei et al. / Information Sciences 258 (2014) 371–386
3.2. Adversarial models

In our assumption, the adversary A could corrupt a small set of cloud servers and control these servers to launch various
cheating attacks as A’s wish. Obviously, according to the different goals, these attacks are summarized as follows.

� Storage-cheating attack model. When the attacks towards data storage security in the cloud, for example, the adversary
would arbitrarily modify the stored data to compromise the data integrity (malicious case) or reveal the confidential data
to purchase interest (interest-purchasing case) or in both of cases. In the malicious case, the compromised cloud servers
would simply reply to the cloud users’ storage queries with a random number. It is a great challenge for cloud users due to
lacking the physical possession of the potentially large size of outsourced data. We assume that if the request data set is X,
the honest returned data set is X0 and the invalid returned data set is X � X0.
� Computation-cheating attack model. When the attacks towards data computation security of the cloud, we assume that a

complicated computation request, denoted F, is comprised of a set of subtasks {f1, f2, . . . , fn}1 and each of subtasks may
involve the input data xpi

located at position pi in the cloud server. Thus, the expected computation result is
R ¼ ff1ðxp1 Þ; f2ðxp2 Þ; . . . ; fnðxpn

Þg for further computing F(R). The adversary would cheat by the following three ways: The
adversary partially computes fiðxpi

Þ for some is (1 6 i 6 n) and returns random numbers for the rest, but claims to have com-
pleted all the computation; the adversary sophisticatedly takes other x̂ where x̂ R X and leads to much lower computational
cost; even claims to use the correct data x but the original data x is just missing. We denote the set {fi} as F0 in which the
subtasks fi are carried out honestly and the set F � F0 where the subtasks are not carried out honestly.
� Privacy-cheating attack model. When the attacks towards privacy issue of the cloud, which can be viewed as another kind

of storage-cheating attack, we assume that the adversary may compromise cloud users’ privacy by leaking their confiden-
tial data to others, e.g. healthy condition to public or auction price to business competitors, which would lead to serious
consequences. To provide data confidentiality, one straightforward approach is to save encrypted the data in the cloud
servers. However, such an approach may prevent the regular cloud computation from being further processed.2 Besides,
if the data are stored in a plaintext in the cloud servers, the adversary in the interest-purchasing case may break into and sell/
publish the sensitive data to the public. Furthermore, we assume that to sell the sensitive data, the adversary should provide
the corresponding proofs to demonstrate the authenticity of the stored data and computing results to convince others.

3.3. Secure cloud computing

3.3.1. Uncheatable cloud computation
To formally define the security model in the cloud computing, we introduce two concepts Secure Computation Confidence

(SCC) and Secure Storage Confidence (SSC) to indicate the trust level of computation security and storage security, respec-
tively. SCC is defined as jF0j/jFj and SSC is formalized as jX0j/jXj. In both cases, cloud computation or cloud storage is regarded
as fully trusted if SCC (SSC) equals 1. Otherwise, it is semi-trusted.

Definition 1 (Uncheatable cloud computation). Let Pr[CheatingSuccessfully] be the probability that an adversary with
the trust level of SCC and SSC could successfully cheat without being detected by sampling based verifiers. We denote the
computation is uncheatable, if for arbitrary sufficiently small positive number �, there exists a sampling size t such that the
following conditions always satisfies:
1 A r
individu

2 Mo
Pr½Cheating Successfully� ¼ Pr½SCC; SSC; t� < �: ð1Þ
3.3.2. Privacy-cheating discouragement
To discourage the adversary from leaking the cloud users’ sensitive data, we introduce a novel privacy-cheating discourage-

ment model where the adversary wants to illegally sells the cloud users’ sensitive data to others. Similar to software sales [21],
the software vendor may embed a digital signature in its products to allow the users to authenticate them. Such an authenti-
cation could be strictly limited to paying customers rather than the illegitimate users to avoid software piracy. Therefore, it is
required that any storage and computation auditing should be authorized by the cloud users. In other words, this could discour-
age adversaries from leaking users’ private data. To achieve this target, we introduce the following definition.

Definition 2 (Privacy cheating discouragement). Let InfoLeak denote the event that valid information is leaked by the
adversary. The cloud computing is privacy cheating discouragement, if for a sufficiently small positive number �, the
following equation holds in a polynomial time t:
Pr½InfoLeak� < �: ð2Þ
esearch by [24] was also dividing sequential tasks into smaller subtasks, permuting them among participants and then enabling the detection of
al and colluding malicious participants.

st of the current secure multi-computation (SMC) protocols are at the theoretical level and may be impractical implementation in cloud computing [32].

L. Wei et al. / Information Sciences 258 (2014) 371–386 375
3.4. Design goals

The proposed protocol is expected to achieve the following security and performance goals:

� Data storage security: To make sure that the data are securely stored in cloud, the proposed protocol should enable that
CU and VA could fetch and audit the pre-stored data effectively.

� Data computation security: To achieving secure computation, the proposed protocol should ensure that the computa-
tion be audited by CU and VA. Considering the fact that some cloud users suffer from computation and transmission
constraints, VA’s verification is a promising approach for securing cloud computation.

� Privacy cheating discouragement: The proposed scheme should ensure that only designated verification parties (e.g.,
CSP or VAs) could verify the stored data or computing results, which can discourage the CSP from compromising users’
privacy, even if the cloud servers are compromised by the attackers.

� Efficiency: The computation and transmission overhead of the auditing should be reduced, as is best to meet the
minimum.

4. Preliminaries and notation

4.1. Bilinear pairing

Let G1 be a cyclic additive group with an operation (+) and G2 be a cyclic multiplicative group with an operation (�). Both
of them have the same prime order q. Let P be a generator of G1. An efficient admissible bilinear map ê : G1 �G1 ! G2, with
the following properties: (1) for all P 2 G1 and a; b 2 Z�q; êðaP; bPÞ ¼ êðP; PÞab; (2) Non-degenerate: There exists P 2 G1 such
that êðP; PÞ– 1; and (3) Computable: there is an efficient algorithm to compute êðP;QÞ for any P;Q 2 G1. Typically, we can
implement the bilinear map using Weil or Tate pairing [6]. Most of the identity based cryptographic schemes are achieved by
employing this technique.

4.2. BDH problem and BDH assumption

The Bilinear Diffie–Hellman (BDH) problem in ðG1;G2; êÞ is as follows: Given (P,aP,bP,cP) for some unknown a; b; c 2 Z�q,
compute êðP; PÞabc 2 G2. An algorithm A has advantage � in solving BDH in ðG1;G2; êÞ if
Pr AðP; aP; bP; cPÞ ¼ êðP; PÞabc
h i

P �
where the probability is over the random choice of a; b; c 2 Z�q, the random choice of P 2 G1, and the random bits of A.
We denote the BDH assumption that tere exists no algorithm A has advantage � in solving the BDH problem in any poly-

nomial time, That is,
Pr½BDH� 6 �:
The BDH assumption is a variant of the computational Diffie–Hellman assumption [6].

4.3. Designated verifier signature

It is a special signature scheme [37,23,19] that the designated verifier can take its private key and the signer’s public key
to verify the signatures, but it is unable to use this signature to convince any other parties that the message is indeed signed
by the original signer, even if the verifier is willing to reveal its private key. This is achieved on that the verifier could take
advantage of its private key to generate a fake signature and any other parties are unable to distinguish whether these
messages are authentic, i.e. whether they have been signed by the users or not.

4.4. Merkle hash tree

Merkle hash tree is a well-known authentication structure proposed by Merkle [26], which is constructed as a binary tree
where each leaf of the tree is a hash value of authentic data values. It is often used to efficiently and securely to ensure the
authencithy and integrity.

4.5. Sampling technique

In order to obtain data verification, a solution is to use sampling technique. The verifier randomly selects a small number
of inputs value; it only double-checks the results of these sample inputs. If the dishonest cloud server computes only one half
of the inputs, the probability that it can successfully cheat the supervisor is one out of 2m, where m is the number of samples.
If we make m large enough, e.g. m = 50, the cheating is almost impossible. This solution has a very small computational over-
head ðOðmÞÞ compared with double-check all the computation results.

V1

y1||p1

V2

y2||p2

V3

y3||p3

V4

y4||p4

V5

y5||p5

V6

y6||p6

V7

y7||p7

V8

y8||p8

A B C D

E F

R

SigCSP(R)

Fig. 2. Construct a Merkle hash tree based commitment scheme.

376 L. Wei et al. / Information Sciences 258 (2014) 371–386
5. The basic SecCloud protocol

To achieve secure cloud computing, we propose a basic protocol relying on the identity-based cryptography. Our pro-
posed protocol consists of four phases: ‘‘system initialization’’, ‘‘secure cloud storage’’, ‘‘secure cloud computation’’, and ‘‘com-
putation result auditing’’. Fig. 1 illustrates an overview of data and service flows in the protocol.

5.1. System initialization

5.1.1. System setup step
The System Initialization Operator (SIO)3 generates the system parameters and master secret keys. Specifically, SIO selects

two groups G1 and G2 and an admissible pairing ê : G1 �G1 ! G2; then it chooses cryptographic hash functions
H : f0;1g� ! Zq

4, H1 : f0;1g� ! G1 and H2 : f0;1g� ! Z�q;H3 : G2 ! Zq. After setting the system parameters, SIO picks up a
random number s 2 Z�q as its master secret key and chooses an arbitrary generator P 2 G1 and sets its public key as Ppub = s � P.
Finally, the system parameters are params ¼ ðG1;G2; q; ê; P; Ppub;H;H1;H2;H3Þ. The system’s secret key s is safely kept.

5.1.2. User registration step
When a cloud user applies for the cloud services, it first needs to register to SIO. The cloud user submits its identity ID to

SIO and receives system parameters params and a secret key skID from SIO in a secure way, such as TLS or SSL. Specifically,
the procedure is as follows:
3 In r
bring h
SIO’s ab

4 For
skID ¼ s � Q ID ð3Þ
where QID = H1(ID). Note that system setup and registration step could be performed off-line.

5.2. Secure cloud storage

Our secure cloud storage protocol includes the following four steps:

5.2.1. Storage space applying step
Before the data are transmitted to the cloud, the cloud user first applies the storing space for its messages

M ¼ fm1;m2; . . . ;mng 2 Zq. The cloud service provider allocates these space and returns the space index set I = {i1, i2, . . . , in} to CU.

5.2.2. Data signing step
To enable the storage data auditing, the cloud user needs to sign each transmission block mi to generate an authenticated

information in Algorithm 1. To preserve user’s privacy in our model, CU makes a little modification of the traditional
signature scheme according to the designated verifier signature. CU also chooses a trusted verification agency and then does
Algorithm 1 to sign each block.
eality, the government or other trusted third party (TTP) plays the role of SIO. Since the system initialization step could be performed off-line, it will not
eavy burden to these organization. According to [36], the key escrow problems have been considered in identity based signature schemes to prevent
use.
simplicity, H is only used for constructing the Merkle hash tree.

L. Wei et al. / Information Sciences 258 (2014) 371–386 377
Algorithm 1. Data signing algorithm.
5.2.3. Data encapsulation step
To guarantee the secure data transmissions, after identifying the cloud server or the verification agency, the cloud user

pre-computes the session key keyID,CS or keyID,VA as following:
keyID;CS ¼ H3ðêðskID;Q CSÞÞ or keyID;VA ¼ H3ðêðskID;Q VAÞÞ
At the cloud side, the cloud server could also compute the session key
keyCS;ID ¼ H3ðêðskCS;QIDÞÞ
Here, a pair of symmetrical keys between CU and CSP are shared, since
keyCS;ID ¼ H3ðêðskCS;QIDÞÞ ¼ H3ðêðs � Q CS;Q IDÞÞ ¼ H3ðêðQCS; s � Q IDÞÞ ð*bilinearity of êÞ ¼ H3ðêðQ CS; skIDÞÞ
¼ H3ðêðskID;Q CSÞÞ ¼ keyID;CS ð4Þ
Due to the hardness of Bilinear Diffie–Hellman (BDH) problem, the session key is secure against the external attacks. Fi-
nally, the user sends the data and corresponding signature pairs {D,U} encrypted by this session key to CSP.

5.2.4. Data receiving step
After receiving the pactkets, CSP first decrypts them by its own session key to obtain the data-signature pairs {D,U} and

checks the signatures by verifying Eq. (5) using its secret key skCS:
Ri ¼ êðUi þ H2ðUikmikiiÞQID; skCSÞ ð5Þ
If Eq. (5) holds, CSP is convinced that users’ data are securely transferred without malicious tampering. Then CSP arranges
storing these data in the space {I} and returns an acknowledge to cloud user, which makes cloud user delete {D,U} from local
storage as general cloud computing model. Otherwise, a ‘‘Complaint Message’’ is broadcast to alert a invalid data.

Note that, privacy cheating is discouraged in our proposed protocol since that only CSP and designated VA could verify
the results and the positions of data storage whereas any other parties could not check it since they do not have the corre-
sponding private keys.

5.3. Secure cloud computation

Our secure cloud computation protocol is based on a commitment scheme using Merkle hash tree, which includes the
following two steps:

5.3.1. Computation request step
When a cloud user submits a computation service request, which could be viewed as a set of functions F = {f1, f2, . . . , fn} and

the positions index of data blocks P = {p1,p2, . . . ,pn}. The functions fi 2 F can be considered as basic functions such as data sum

378 L. Wei et al. / Information Sciences 258 (2014) 371–386
and average, and other complicated computations based on these basic functions and on the data which are stored in the
position pi 2 P.
5.3.2. Commitment generation step
When CSP receives the computation requests {F,P}, CSP divides such a large task into multiple small sub-tasks and allows

them executed parallelly on the different cloud servers based on the data positions. Each cloud server first finds the data in
the position pi, computes the function as yi ¼ fiðxpi

Þ honestly and returns to CSP. The later constructs a Merkle hash tree with
n-leaves, each value of which Vi can be calculated by
Fig. 3.
in dark
signatu
reader
XðViÞ ¼ HðyikpiÞ;
and builds from bottom to top. For each internal node V, its value X(V) could be derived from its children node value as
follows:
XðVÞ ¼ HðXðVLeftChildÞkXðVRightChildÞÞ ð6Þ
where VLeftChild and VRightChild denotes V’s two child nodes. Fig. 2 shows an example to construct a Merkle hash tree with data
and computation results. We denote R as the root value of the Merkle hash tree. The cloud service provider signs the root R
and obtains the signature SigCS(R). Finally, the cloud service provider returns the results Y = {yij(1 6 i 6 n)}, the commitment
value R, and its signature SigCS(R) to the cloud user.
5.4. Computation result auditing

To achieve the secure cloud computation, CUs need to perform result verification. In our scheme, the result verification
also includes the storage verification to ensure that the data are not only stored at the correct positions but also indeed taken
into computation.

Due to the resource limitation, an ordinary cloud user could just afford the commitment verification. More specifically,
the cloud user re-builds the Merkle hash tree, compares the root value, and verifies the signature. Furthermore, the cloud
user needs to delegate the verification right to its trusted VA for further verification if necessary. More specifically, the cloud
user proceeds as follows: it sends {F,P,Y,R,SigCS(R)} as well as a warrant include the identity of the delegatee right and the
expired time to VA for auditing.

Note that, VA not only checks if the data has been appropriately stored at the cloud server but also ensures if the
computation process has been performed correctly. In our assumption, even though VA is expected to have more powerful
computational and transmission capability than the cloud users, it is not cost-effective to fetch each of the data block in P
and re-compute each fi(�) to check if the cloud storage and computation is well performed. Thus, the probabilistic sampling
technique is adopted here to reduce the overall verification cost. The detailed protocol includes the following steps:
5.4.1. Auditing challenge step
When VA starts to audit the results, it first picks a random sampling index set C = {c1,c2, . . . ,ct} from the domain

{1,2, . . . ,n}. Then VA sends these challenge requests to CSP as well as the warrant.
V1

y1||p1

V2

y2||p2

V3

y3||p3

V4

y4||p4

V5

y5||p5

V6

y6||p6

V7

y7||p7

V8

y8||p8

A B C D

E F

R

Re-construct a Merkle hash tree for example. The challenge on f4(m4) needs to find a path /4 including the vertices {V4,B,E,R}. We have shown them
. To perform this computation, each node’s sibling vertex are required to compute the root R. Thus, w4 = {V3,A,F}. CSP returns the data m4, its
re R04 and U4, and w4 = {V3,A,F} to the challenger VA. We show them in green. (For interpretation of the references to colour in this figure legend, the
is referred to the web version of this article.)

L. Wei et al. / Information Sciences 258 (2014) 371–386 379
5.4.2. Auditing response step
When CSP receives these auditing challenges, it first verifies the warrant to check whether it is expired. After that, for

each sampling index ci, CSP finds the stored data mci
and its signatures R0ci

and Uci
which are used to audit secure storage

in the cloud. CSP finds the path /ci
in the Merkle hash tree of auditing computation from the leaf value ci to the root R.

For each node on this path /ci
, CSP collects the sibling nodes in the set wci

. Finally, CSP returns the fmci
;Uci

;R0ci
;wci

;Rg
(see Fig. 3).

5.4.3. Response verification step
When VA gets the results from the cloud, VA verifies the storage correctness and the computation correctness as shown in

Algorithm 2.
Firstly, VA checks whether the cloud servers use the data in the request positions, not other positions. VA verifies the

signature R0ci
using the algorithm
VerifySigByVAðUci
;R0ci

;mci
; pci

; skVAÞ;
which returns true if the following equation is satisfying:
R0ci
¼ êðUci

þ H2ðUci
kmci
kpci
ÞQ ID; skVAÞ: ð7Þ
If the signature R0ci
is correct, VA is convinced that the cloud servers use the data on the correct positions. Otherwise, the

cloud servers’ cheating behaves are detected.
Secondly, VA checks the correctness of the result y�ci

using algorithm
VerifyCom y�ci
; fci

;mci

� �
;

Algorithm 2. Sampling based cloud computation auditing protocol.
which returns true if the following equation is satisfying:
y�ci
¼ fci
ðmci
Þ:
The servers’ cheatings are caught once the algorithm VerifyCom y�ci
; fci

;mci

� �
returns false.

Finally, VA uses the commit information to ensure that each yci
is used at the beginning of building the Merkle hash tree:

VA uses the correct y�ci
kpci

as one leaf and sibling node set to reconstruct the root R⁄ of the tree by Eq. (6). Only if R⁄ = R, VA
can trust that all of the computation ffci

ðmci
Þg had been completed before the Merkle hash tree was built.

380 L. Wei et al. / Information Sciences 258 (2014) 371–386
5.4.4. Auditing return step
VA returns true to CU if the cloud server’s cheating and attacker’s behaves are not caught in the all challenges. CU is

convinced that the cloud servers do not cheated and behave normally with a high probability. Otherwise, VA returns false
and CU may drop the computing results and report to CSP a cheating alarm.

6. The advanced protocol with batch verification

Considering the fact that the major communication and computation overhead comes from verification of the signatures,
we introduce an advanced protocol to further reduce the computational and communication overhead in this section.

The idea comes from aggregate signatures with batch verification. According to identity based aggregate signatures, our
scheme can achieve almost constant computation overhead for VA in the data verification as well as CSP. VA can
concurrently handle the multiple verification requests not only from one cloud user but also from different cloud users. As-
sume that a set of users {IDij1 6 i 6 k}, each of which generates signature {rijj1 6 j 6 ni} on message {mijj1 6 j 6 ni}. VA does

as follows: R0A ¼
Qk

i¼1

Qni
j¼1R

0
ij, UA ¼

Pk
i¼1

Pni
j¼1ðUij þ H2ðUijkmijÞQ IDi

Þ. Then VA uses its secret key to verify
êðUA; skVAÞ¼? R0A ð8Þ
The correctness is as follows:
R0A ¼
Yk

i¼1

Yni

j¼1

êðVij;QVAÞ ¼ ê
Xk

i¼1

Xni

j¼1

Vij;Q VA

 !
¼ ê

Xk

i¼1

Xni

j¼1

ðrij þ H2ðUijkmijÞÞskIDi
;Q VA

 !

¼ ê
Xk

i¼1

Xni

j¼1

ðUij þ H2ðUijkmijÞQIDi
Þ; skVA

 !
¼ êðUA; skVAÞ: ð9Þ
The computational complexity of our scheme is analyzed as follows. Note that the signature combination R0A and UA can
be performed incrementally and the computational cost are almost measured by the expensive pairing operations ê. It is
obvious that given n unauthenticated signatures, in such batch verification, the major computational cost is bounded by 2
pairings while it costs 2n pairings by individual verification, which is a significant improvement on computational efficiency.
If the verification succeeds for all the sample set C, the verifier is convinced that the cloud has not cheated as a high
probability.

7. Security analysis

7.1. Uncheatability analysis

To analyze uncheatability of our computation, we evaluate the sampling performance of SecCloud in terms of the number
of sampling blocks to be retrieved.

Theorem 1. According to Definition 1, our protocol is uncheatable.
Proof. We first define FCS as the event that the adversary could successfully cheat by guessing the results of f or behave
normally. For simplicity, let jfj be the result range of f. Thus, the probability that an adversary could randomly guess the cor-
rect result of f(x) is 1

jf j without any auxiliary information if f is uniform distribution. Besides, we adapt the concept of SCC in
our definition to qualify the probability of the adversary’s attacks. Therefore, the probability that the adversary could suc-
cessfully cheat a t-time sampling scheme without being detected is as follows:
Pr½FCS� ¼ SCC þ ð1� SCCÞ 1
jf j

� �t

: ð10Þ
Since in the most cases, jfj would be quite large, that is, jfj > 1, Pr[FCS] approaches to 0 when the sampling size t is large.

Thus, it must exist some t, where t P lg �
2 = lg SCC þ ð1� SCCÞ 1

jf j

� �l m
, such that
Pr½FCS� < �
2
: ð11Þ
We also define PCS is the event that the adversary could successfully cheat by using the data on the incorrect positions. In
this case, the adversary needs to forge the signature to pass the verification. We take the concept of SSC to qualify adversary’s
attacks. Therefore, in a t-time sampling scheme, the probability the adversary can successfully using the data on the incorrect
positions is:
Pr½PCS� ¼ ðSSC þ ð1� SSCÞPr½SigForge�Þt: ð12Þ

0 0.2 0.4 0.6 0.8 1
0

0.5

1
0

20

40

60

80

100

Secure computation confidenceSecure storage confidence

Sa
m

pl
in

g
si

ze

10

20

30

40

50

60

70

80

90

Fig. 4. Required sample size to achieve uncheatable computation given � = 0.0001.

L. Wei et al. / Information Sciences 258 (2014) 371–386 381
where Pr[SigForge] is the probability that the cloud could forge such a digital signatures. Since the signature scheme is
proved secure based on the assumption of BDH, that is, Pr[SigForge] 6 Pr[BDH], Pr[SigForge] is a small value in our model.
Pr[PCS] approaches to 0 when the sampling size is large. Thus, it must exist some t, where t P lg �

2 = lgðSCC þ ð1� SCCÞPr
�

½SigForge�Þe, such that
Pr½PCS� < �
2
: ð13Þ
From our Definition 1, we can define the adversary cheats successfully if the event FCS or event PCS takes place. For
simplicity, we assume that the event FCS and PCS are independent. Thus, the probability that the adversary can cheat
successfully is evaluated as follows:
Pr½Cheating Successfully� ¼ Pr½FCS [PCS� 6 Pr½FCS� þ Pr½PCS� < �: ð14Þ
To get more accurate results, we evaluate the minimal sampling size by numerical method in MATLAB. Given � = 0.0001,
Fig. 4 shows the various minimal sampling sizet for different SCC and SSC.

When we consider an extreme situation that the cloud server has computing with half of SCC and half of SSC in the task,
the range is jfj = 2 since the results are {0,1} for simplicity, we need at least 33 samples to ensure the probability of successful
cheating to be below � = 0.0001. When jfj is large enough, (i.e., jfj?1, it is almost impossible to make a correct guess on f(x)
without computing it), we only need 15 samples.

Therefore, the adversary could successfully cheat with a neglect probability. That means that our protocol is
uncheatable. h
7.2. Privacy discouragement analysis

To analyze our privacy level, we compare the probability with cryptographic assumptions in Section 4.

Theorem 2. According to Definition 2, our protocol could achieve privacy cheating discouragement.
Proof. In our protocol, the designated verifier signature scheme is proved secure based on the assumption of BDH. That
means no adversary could forge such a signature in the polynomial time unless it could solve BDH problem, that is,
Pr½SigForge� 6 Pr½BDH�:
On one hand, the cloud servers can confirm the users’ identity by verifying the signature since it is hard for any other
users to forge these signature. On the other hand, even the cloud servers are compromised by attackers, the data and the
signatures the adversary obtains cannot convince others since it needs the secret keys to verify the signature and the cloud
server can also generate the signature of themselves.

Thus, the only way for successful cheating is that the adversary forges the cloud users’ signatures, which leads to conflict
with the BDH assumption in the polynomial time. We assume that the probability of solving BDH problem is � for any
polynomial time algorithms. From the discussion above, in the polynomial time, we have:

Table 1
Cryptographic operation’s execution time.

Descriptions Execution time (ms)

Tpmul Time for one point multiplication 20.63
Tpair Time for one pairing operation 26.75

Table 2
Comparison of related work.

Scheme Verification cost

ESORICS09 [34] 2K � TPair + (S + 1)K � TMul

INFOCOM10 [33] (K + 1) � TPair + (S + 1)K � TMul

Our scheme 2TPair + K � TMul

5 In o
learning

382 L. Wei et al. / Information Sciences 258 (2014) 371–386
Pr½InfoLeak� 6 Pr½SigForge� 6 Pr½BDH� 6 �: ð15Þ
Therefore, from Definition 2, our protocol is privacy cheating discouragement with a neglect probability. h
7.3. Optimal sample size to minimize total cost

To generally estimate the total cost for our sampling algorithm in the protocol, we assume that it can be divided into three
kinds of cost. Let Ctrans and Ccomp be the transmission cost and the computational cost for each sampling message-signature
pairs, respectively. We also define the cost Ccheat that is caused by the undetected cheating attacks. The total cost Ctotal for a
sample set of t is as follows:
Ctotal ¼ a1 � t � Ctrans þ a2 � Ccomp þ a3 � Ccheat � qt ð16Þ
where q is the probability of cheating successful and a1, a2, and a3 are coefficients for these costs, respectively. The following
theorem gives the optimal sample size t to achieve a minimal total cost.

Theorem 3. Given the transmission cost Ctrans, computational cost Ccomp and successfully cheating cost Ccheat, and the probability
of cheating successful q, the optimal sample set t for achieving the minimal cost is
t ¼ ln � a1 � Ctrans

a3 � Ccheat � ln q

� ��
ln q

� 	
: ð17Þ
Proof. Since Ctotal = a1 � t � Ctrans + a2 � Ccomp + a3 � Ccheat � qt, to minimize the total cost Ctotal, we have
dC
dt
¼ a1 � Ctrans þ a3 � Ccheatqt ln q: ð18Þ
It is easy to check that the derivative is 0 when t ¼ ln � a1 �Ctrans
a3 �Ccheat �ln q

� �.
ln q. Note that, t must be an integer in practice.5 h
8. Performance analysis

We evaluate the performance of SecCloud in two aspects: the cryptographic operation costs and the effectiveness and
efficiency of SecCloud in our developed test bed.

8.1. Cryptographic overhead evaluation

We use the JPBC library [10] for doing pairing and large number operations to implement some of our cryptographic pro-
tocols. We experiment to record the delay of cryptographic operations according to typical security parameters (see Table 1).

Compared with related work as in [34,33], we consider the verification cost in the protocol which is most expensive cost
operation at both the cloud server side and the verifier side. To a large extent, the computation costs are measured by pairing
time (TPair) and point multiplication time (TMul). Table 2 shows the comparison of various data auditing scheme where K rep-
resents the number of cloud users and S represents the concurrent signatures. It is obviously that our protocol is much more
rder to optimize the cost in practice, we need the detail cost information such as Ctrans, Ccomp, Ccheat, a1, a2, and a3. We evaluate them through a history
process.

Slave ServersClients Master Server

Resources
Storage
Request

Computation
Request

Encrypted
Channel

Web Brower
Front

APIs

Management
Module

Computation
Module

Storage
Module

Resources Resources

Distributed
Storage

Distributed
Computation

Interface

Security
Module

Data Encapsulation

Se
cu

re
 D

at
a

C
om

pu
ta

tio
n

Se
cu

re
 D

at
a

St
or

ag
e

Key Management

Fig. 5. A cloud computing experiment environment: SecHDFS.

Table 3
Comparison of various signature scheme.

Scheme Individual verify Batch verify

RSA g � TRSA NA
ECDSA g � TECDSA NA
BGLS [7] 2g � Tpair (g + 1) � Tpair

Our scheme 2g � Tpair 2 � Tpair

L. Wei et al. / Information Sciences 258 (2014) 371–386 383
efficient than the previous ones since pairing times are constant in SecCloud while in their schemes pairing times are linear
with the number of concurrent signatures.

To further demonstrate the suitability of the proposed scheme, we compare the computational cost for different signature
schemes in Table 3, which need to handle a batch signatures with a size of g.

8.2. Experiment environment

We first give a brief description on the traditional distributed file systems (DFS) in cloud and Google’s Hadoop Distributed
File System (HDFS) [5]. Then we introduce our developed test bed: SecHDFS which integrates security module to HDFS. Fi-
nally, we implement SecCloud into this test bed.

8.2.1. A brief introduction to traditional DFS
Traditional DFS systems such as Google HDFS are wildly accepted and used in Google, IBM, Yahoo and other 30+ enter-

prisers to store and manage their large number of data in cloud. As a typical DFS in cloud, the cloud master contains three
modules, which are interface module, storage module, and management module. For adapting to different client platforms
including personal computer operating systems, cell phone operating systems, and PDA operating systems, interface module
provides web browser front and APIs for both general clients and specific programmers. The storage module is in charge of
maintaining virtual file system organization and splitting files into blocks which will be uploaded to selected slave servers.
The management module is in charge of monitoring the storage resources as well as the slave servers information such as
heart detecting, sparse space on disks and transmission speed. In addition, HDFS improves DFS by adding its computation
module Hadoop in the file system. The computation module is in charge of adopting computation requests provided from
users and distributing the computation and related data to slave servers.6

8.2.2. Our developed SecHDFS
To add security feature into the current HDFS, we develop a secure Hadoop distributed file system SecHDFS, as a practical

test bed shown in Fig. 5. Furthermore, as illustrated in blue color in Fig. 5, we adds security module to HDFS including con-
fidentiality by encrypted channels for data uploading, batch verification mechanism, and privacy cheating discouragement
by designated verifier digital signature.

Our test bed consists of four computers with Intel Core processor i5-760 running at 2.8 GHz with 4 GB RAM memory. One
of the four computers plays the role of the master server in the cloud computing, which allocates storage space and storage
data index for the rest three slave servers. Cloud users upload their storage requests and computation requests through a
wired or wireless communication. To be compatible with HDFS, we define the block size 64 MB by splitting each big file into
several blocks, which have a length of 60 MB file contents plus 4 MB security head. The security head includes designated
6 For the more detail of HDFS, we can refer [5].

100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

20

File size (MB)

O
ve

rh
ea

d
(%

)

Overhead percent of SecCloud on master side

100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

20

File size (MB)

O
ve

rh
ea

d
pe

rc
en

t (
%

)
Overhead percent of SecCloud on client side

Fig. 7. The impact traffic load on the master side and client side.

100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7 x 104

File size (Mb)

U
pl

oa
d

tim
e

(m
s)

Upload with overhead
Upload without overhead

Fig. 8. Total overhead of protocols with/without security guarantee.

100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

20

File size (MB)

U
pl

oa
di

ng
 s

pe
ed

 (M
b/

s)

Without security guarantee
With security guarantee

Fig. 6. The impact traffic load on system performance.

384 L. Wei et al. / Information Sciences 258 (2014) 371–386

L. Wei et al. / Information Sciences 258 (2014) 371–386 385
verifier signatures, symmetric key parameters, hash values and other security parameters, which are defined in the Sec-
Cloud. After that, we start our experiments by uploading data to cloud servers from cloud users with cryptographic tech-
niques. After the master server verifies the signature of each block, the storage module maintains a virtual file system
organization by Extensible Markup Language (XML) and distributes each block to slave servers at random.

8.3. Experiment results

We begin our experiments by observing the system performance under various traffic load initializing at 100 MB and
gradually increasing to 850 MB. We also consider the impact of traffic load brought by security overhead.

8.3.1. Impact of traffic load I
The impact of traffic load to system performance is measured by the uploading speed shown in Fig. 6. We can find that the

uploading speeds with security guarantee in SecCloud are very close to that of the original protocol without any security ad-
dons. For example, for the large files (over 500 MB), the uploading speeds are in the range of 13–15 Mb/s, which are almost
2 Mb/s lower than that of the original protocols; for the small files, the speeds become a little unstable at initial step due to
the session establishment delay.

8.3.2. Impact of traffic load II
Security overhead leads to the system delay both in the cloud user’s side (signature generation and symmetric encryp-

tion) and in the cloud server’s side (signature verification and symmetric decryption) in our protocol. Thus, we define the
percent of security overhead by the time of security operations dividing the time of file transmissions. Fig. 7 shows the rela-
tionship in SecCloud between the uploading file size and the percents of the security overhead in the master server’s side
and in the client’s side, respectively. It is observed that after a period of dithering, the curves become stable, where the per-
cents of security overhead are no more than 14%. We also find that for large files (over 500 MB) security overhead would
become to more stable since the transmission time is major and session establishing time is minor.

8.3.3. Overall overhead comparison
To consider the overall overhead, we record the total time of uploading files in two cases for comparison. Fig. 8 shows the

total uploading time comparison between the original protocol and SecCloud. It is observed that SecCloud only has a slightly
more time than the original protocol (between 18% in the best case and 32% in the worst case). Thus, the increased time is
not significantly reduce the system performance.

In summary, the experiment results demonstrate that SecCloud is indeed a viable, lightweight solution for secure data
storage and computation in the cloud computing.

9. Conclusions

In this paper, we have proposed, SecCloud, a privacy-cheating discouragement and secure-computation auditing protocol
for data security in the cloud. To the best of our knowledge, it is the first work that jointly considers both of data storage
security and computation auditing security in the cloud. We have defined the concepts of uncheatable cloud computation
and privacy-cheating discouragement and proposed SecCloud to achieve the security goals. To improve the efficiency, dif-
ferent users’ requests can be concurrently handled through the batch verification. By the extensive security analysis and per-
formance simulation in our developed SecHDFS, it is showed that our protocol is effective and efficient for achieving a secure
cloud computing. In our future work, we continue to consider some detailed computation such as linear program computa-
tion and data mining and formalize these security models in the cloud computing. In addition, we also focus on the privacy
preserving issues in the above computation. Furthermore, we plan to implement them in the real cloud platform such as EC2
and OpenStack.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61033014 and 61161140320)
and the National 973 Program (Grant No. 2012CB723401). We would like to thank anonymous reviewers who helped us in
giving comments to this paper.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al, A view of cloud computing,
Communications of the ACM 53 (4) (2010) 50–58.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, D. Song, Provable data possession at untrusted stores, in: Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS’07), Alexandria, Virginia, USA, October 28–31, 2007.

[3] G. Ateniese, R. Di Pietro, L. Mancini, G. Tsudik, Scalable and efficient provable data possession, in: Proceedings of the 4th International Conference on
Security and Privacy in Communication Networks, Istanbul, Turkey, September 22–26, 2008.

http://refhub.elsevier.com/S0020-0255(13)00332-0/h0005
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0005

386 L. Wei et al. / Information Sciences 258 (2014) 371–386
[4] M. Belenkiy, M. Chase, C. Erway, J. Jannotti, A. Küpçü, A. Lysyanskaya, Incentivizing outsourced computation, in: Proceedings of the 3rd International
Workshop on Economics of Networked Systems, Seattle, WA, USA, August 17–22, 2008.

[5] A. Bialecki, M. Cafarella, D. Cutting, O. OMalley, Hadoop: A Framework for Running Applications on Large Clusters Built of Commodity Hardware.
<http://lucene.apache.org/hadoop>.

[6] D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing, SIAM Journal on Computing 32 (3) (2003) 586–615.
[7] D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and verifiably encrypted signatures from bilinear maps, in: International Conference on the Theory

and Applications of Cryptographic Techniques (EUROCRYPT 2003), Warsaw, Poland, May 4–8, 2003.
[8] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, Journal of Cryptology 17 (4) (2004) 297–319.
[9] R. Canetti, B. Riva, G. Rothblum, Verifiable computation with two or more clouds, in: Workshop on Cryptography and Security in Clouds, Zurich,

Switzerland, March 15–16, 2011.
[10] A.D. Caro, jPBC-Java Pairing-based Cryptography Library (Technique Report). <http://gas.dia.unisa.it/projects/jpbc/> (28.12.10).
[11] M. Castro, B. Liskov, Practical byzantine fault tolerance and proactive recovery, ACM Transaction on Computer Systems 20 (4) (2002) 398–461.
[12] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Communications of The ACM 51 (1) (2008) 107–113.
[13] W. Du, J. Jia, M. Mangal, M. Murugesan, Uncheatable grid computing, in: Proceedings of the 24th International Conference on Distributed Computing

Systems (ICDCS’04), Hachioji, Tokyo, Japan, March 24–26, 2004.
[14] Q. Duan, Y. Yan, A.V. Vasilakos, A survey on service-oriented network virtualization toward convergence of networking and cloud computing, IEEE

Transactions on Network and Service Management 9 (4) (2012) 373–392.
[15] C. Erway, A. Kupcu, C. Papamanthou, R. Tamassia, Dynamic provable data possession, in: Proceedings of the 16th ACM Conference on Computer and

Communications Security (CCS’09), Chicago, Illinois, USA, November 9–13, 2009.
[16] R. Gennaro, C. Gentry, B. Parno, Non-interactive verifiable computing: Outsourcing computation to untrusted workers, in: 30th International

Cryptology Conference (CYPTO 2010), Santa Barbara, California, USA, August 15–19, 2010.
[17] P. Golle, I. Mironov, Uncheatable distributed computations, in: The Cryptographers’ Track at RSA Conference 2001, San Francisco, CA, USA, April 8–12,

2001.
[18] A. Haeberlen, A case for the accountable cloud, in: 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and Middleware, Big

Sky Resort, Big Sky, MT, October 10–11, 2009.
[19] Q. Huang, G. Yang, D.S. Wong, W. Susilo, Efficient strong designated verifier signature schemes without random oracle or with non-delegatability,

International Journal of Information Security 10 (6) (2011) 373–385.
[20] W. Itani, A.I. Kayssi, A. Chehab, Privacy as a service: privacy-aware data storage and processing in cloud computing architectures, in: Eighth IEEE

International Conference on Dependable, Autonomic and Secure Computing (DASC 2009), Chengdu, China, December 12–14, 2009.
[21] M. Jakobsson, K. Sako, R. Impagliazzo, Designated verifier proofs and their applications, in: International Conference on the Theory and Application of

Cryptographic Techniques (EUROCRYPT 1996), Zaragoza, Spain, May 12–16, 1996.
[22] A. Juels, B. Kaliski Jr., PORs: proofs of retrievability for large files, in: Proceedings of the 14th ACM Conference on Computer and Communications

Security (CCS’07), Alexandria, Virginia, USA, October 28–31, 2007.
[23] B. Kang, C. Boyd, E. Dawson, A novel identity-based strong designated verifier signature scheme, Journal of Systems and Software 82 (2) (2009) 270–

273.
[24] G. Karame, M. Strasser, S. Capkun, Secure remote execution of sequential computations, in: 11th International Conference on Information and

Communications Security (ICICS’09), Beijing, China, December 14–17, 2009.
[25] A. Marinos, G. Briscoe, Community cloud computing, in: Proceedings of Cloud Computing: First International Conference (CloudCom 2009), Beijing,

China, December 1–4, 2009.
[26] R. Merkle, Protocols for public key cryptosystems, in: IEEE Symposium on Security and Privacy, Oakland, California, USA, April, 1980.
[27] F. Monrose, P. Wyckoff, A. Rubin, Distributed execution with remote audit, in: Proceedings of the Network and Distributed Systems Security

Symposium (NDSS), San Diego, California, USA, 1999.
[28] P. Patel, A. Ranabahu, A. Sheth, Service level agreement in cloud computing, in: Cloud Workshops at OOPSLA09, Orlando, Florida, USA, October 25–29,

2009.
[29] S. Pearson, Y. Shen, M. Mowbray, A privacy manager for cloud computing, in: First International Conference (CloudCom 2009), Beijing, China,

December 1–4, 2009.
[30] A. Sadeghi, T. Schneider, M. Winandy, Token-based cloud computing: Secure outsourcing of data and arbitrary computations with lower latency, in:

Trust and Trustworthy Computing, Berlin, Germany, June 21–23, 2010.
[31] H. Takabi, J. Joshi, G. Ahn, Security and privacy challenges in cloud computing environments, IEEE Security & Privacy 8 (6) (2010) 24–31.
[32] C. Wang, K. Ren, J. Wang, Secure and practical outsourcing of linear programming in cloud computing, in: 30th IEEE Conference on Computer

Communications (INFOCOM 2011), Shanghai, China, April 11–15, 2011.
[33] C. Wang, Q. Wang, K. Ren, W. Lou, Privacy-preserving public auditing for data storage security in cloud computing, in: 29th IEEE Conference on

Computer Communications (INFOCOM’10), San Diego, California, USA, March 14–19, 2010.
[34] Q. Wang, C. Wang, J. Li, K. Ren, W. Lou, Enabling public verifiability and data dynamics for storage security in cloud computing, in: 14th European

Symposium on Research in Computer Security (ESORICS’09), Saint Malo, France, September 21–23, 2009.
[35] L. Wei, H. Zhu, Z. Cao, W. Jia, A. Vasilakos, Seccloud: bridging secure storage and computation in cloud, in: 30th International Conference on Distributed

Computing Systems Workshops (IEEE ICDCSW 2010), Genova, Italy, June 21–25, 2010.
[36] T. Yuen, W. Susilo, Y. Mu, How to construct identity-based signatures without the key escrow problem, International Journal of Information Security 9

(4) (2010) 297–311.
[37] J. Zhang, J. Mao, A novel ID-based designated verifier signature scheme, Information Sciences 178 (3) (2008) 766–773.

http://lucene.apache.org/hadoop
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0010
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0015
http://gas.dia.unisa.it/projects/jpbc/
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0020
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0025
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0030
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0030
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0035
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0035
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0040
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0040
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0045
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0050
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0050
http://refhub.elsevier.com/S0020-0255(13)00332-0/h0055

	Security and privacy for storage and computation in cloud computing
	1 Introduction
	2 Related work
	3 Problem formulation
	3.1 System architecture of cloud computing
	3.2 Adversarial models
	3.3 Secure cloud computing
	3.3.1 Uncheatable cloud computation
	3.3.2 Privacy-cheating discouragement

	3.4 Design goals

	4 Preliminaries and notation
	4.1 Bilinear pairing
	4.2 BDH problem and BDH assumption
	4.3 Designated verifier signature
	4.4 Merkle hash tree
	4.5 Sampling technique

	5 The basic SecCloud protocol
	5.1 System initialization
	5.1.1 System setup step
	5.1.2 User registration step

	5.2 Secure cloud storage
	5.2.1 Storage space applying step
	5.2.2 Data signing step
	5.2.3 Data encapsulation step
	5.2.4 Data receiving step

	5.3 Secure cloud computation
	5.3.1 Computation request step
	5.3.2 Commitment generation step

	5.4 Computation result auditing
	5.4.1 Auditing challenge step
	5.4.2 Auditing response step
	5.4.3 Response verification step
	5.4.4 Auditing return step

	6 The advanced protocol with batch verification
	7 Security analysis
	7.1 Uncheatability analysis
	7.2 Privacy discouragement analysis
	7.3 Optimal sample size to minimize total cost

	8 Performance analysis
	8.1 Cryptographic overhead evaluation
	8.2 Experiment environment
	8.2.1 A brief introduction to traditional DFS
	8.2.2 Our developed SecHDFS

	8.3 Experiment results
	8.3.1 Impact of traffic load I
	8.3.2 Impact of traffic load II
	8.3.3 Overall overhead comparison

	9 Conclusions
	Acknowledgments
	References

